Estimator#
- class mergernet.estimators.base.Estimator[source]#
Bases:
ABC
Attributes
- compile_model(tf_model: Model, optimizer: Optimizer, metrics: list = [], label_smoothing: float = 0.0)[source]#
- download(config: EstimatorConfig, replace: bool = False)[source]#
- get_dataaug_block(flip_horizontal: bool = True, flip_vertical: bool = True, rotation: Tuple[float, float] | bool = (-0.08, 0.08), zoom: Tuple[float, float] | bool = (-0.15, 0.0))[source]#
- get_scheduler(scheduler: str, lr: float) LearningRateSchedule [source]#
For cosine_restarts scheduler, the learning rate multiplier first decays from 1 to alpha for first_decay_steps steps. Then, a warm restart is performed. Each new warm restart runs for t_mul times more steps and with m_mul times initial learning rate as the new learning rate.
- _abc_impl = <_abc_data object>#
- registry = <mergernet.estimators.base.EstimatorRegistry object>#
- property tf_model#