OptunaEstimator#
- class mergernet.estimators.automl.OptunaEstimator[source]#
- Bases: - Estimator- Attributes - _objective(trial: Trial) float[source]#
- Objective function that will be optimized by oputna - Parameters:
- trial (optuna.trial.Trial) – The current optuna trial 
- Returns:
- The metric that will be optimized by optuna 
- Return type:
 
 - compile_model(tf_model: Model, optimizer: Optimizer, metrics: list = [], label_smoothing: float = 0.0)#
 - download(config: EstimatorConfig, replace: bool = False)#
 - get_dataaug_block(flip_horizontal: bool = True, flip_vertical: bool = True, rotation: Tuple[float, float] | bool = (-0.08, 0.08), zoom: Tuple[float, float] | bool = (-0.15, 0.0))#
 - get_scheduler(scheduler: str, lr: float) LearningRateSchedule#
- For cosine_restarts scheduler, the learning rate multiplier first decays from 1 to alpha for first_decay_steps steps. Then, a warm restart is performed. Each new warm restart runs for t_mul times more steps and with m_mul times initial learning rate as the new learning rate. 
 - train(*args, **kwargs) Tuple[Model, History][source]#
- Starts the optuna optimization and returns the best model trained - Returns:
- The best model trained 
- Return type:
- tf.keras.Model 
 
 - _abc_impl = <_abc_data object>#
 - registry = <mergernet.estimators.base.EstimatorRegistry object>#
 - property tf_model#